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Abstract
We present a general theoretical framework, based on the Preisach model
of hysteresis, for describing irreversible phenomena in magnetically ordered
materials, which includes the effects of the critical ordering temperature
TC . The model is based on the premise that the free energy landscape
can be decomposed into an ensemble of bistable Barkhausen elements, each
characterized by two energy barriers which are defined by local anisotropy
and interaction fields. The free energy landscape has an explicit temperature
dependence which originates from the critical growth of the spontaneous
moment below the critical temperature TC , and thermal overbarrier fluctuations
are responsible for relaxing the system towards equilibrium. The theory
identifies certain fundamental characteristic energies which play a primary role
in determining the principal features of the magnetic response. The model
is able to replicate a broad spectrum of behaviour observed experimentally in
the field and temperature dependence of magnetic response functions such as
the field cooled and zero-field cooled moment and the major hysteresis loop,
in a wide variety of magnetic materials, including very specific experimental
anomalies and trends, and provides a rigorous theoretical framework which
quantifies the interpretation of the experimental data.

1. Introduction

The vast majority of magnetic materials which form the subject of current investigation,
whether for fundamental or technological reasons, are magnetically ordered, in the sense that
they possess a characteristic critical temperature TC at which the permanent atomic moments
undergo a sudden, spontaneous, cooperative alignment, driven by the exchange interaction.
Below TC , the material consists of uniformly magnetized regions, which may be either discrete
particles or magnetic domains, or some mixture of these. In general, the state of a magnetic
system in a given external field ha at a given temperature T cannot be completely specified by
global response functions such as the total system moment m, since each value of m can be
realized by a multiplicity of distinct configurations of uniformly magnetized regions. Each of
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these configurations is metastable in the sense that it corresponds to a local minimum in the
free energy landscape in a multidimensional configuration space. These metastable minima
are separated by energy barriers, due to anisotropy and domain wall pinning effects, which
trap the system temporarily in a particular configuration and prevent it from exploring all of
its configuration space ergodically, and thus from reaching thermal equilibrium within the
timescale texp of a given experiment. Each energy barrier W is characterized by a blocking
temperatureTB < TC , below which thermal fluctuations are insufficient to excite an overbarrier
transition. Furthermore, the free energy landscape itself depends explicitly on temperature,
and all of the free energy barriers must collapse along with the spontaneous moment of the
domains or particles as the critical temperature is approached from below. Thus, in response
to changes in field or temperature, the system evolves from one configuration to another along
a very complex path in a multivalleyed configuration space, driven in part by field-induced
distortions of the free energy landscape which extinguish local transition barriers, and in part
by thermal overbarrier activation events. This path is highly sensitive to the precise sequence
of application of the external stimuli, as well as to the timescale texp of the experiment, and
this situation is reflected in the multivaluedness of experimental response functions such as
m(ha, T ), a phenomenon known as hysteresis.

The Preisach model of hysteresis [1, 2] provides the physical and mathematical foundations
for constructing a comprehensive theoretical description of irreversibility in magnetically
ordered materials, which incorporates all of the essential physical elements outlined above. The
model assumes that the free energy landscape, no matter how complex, can be decomposed
into an ensemble of elementary bistable fragments [2–4], each characterized by two stable
states and by two free energy barriers W+ and W−, which inhibit transitions between the
states. A given magnetic material is characterized by a particular distribution f (W+,W−) of
these energy barriers. Transitions between the two levels of a subsystem must be activated
by some combination of field energy and thermal energy, and the model provides a uniquely
graphical representation of these activation conditions, and a powerful mathematical algorithm
for computing the response of the entire ensemble under a variety of common experimental
protocols. When the spontaneous moment of the subsystems and the distribution of subsystem
free energy barriers are allowed to evolve explicitly with temperature, the model is able to
replicate in detail many of the structural features which characterize the irreversible response
of a broad spectrum of magnetically ordered systems, and identifies certain fundamental
characteristic energies which play a particularly crucial role in shaping the response.

2. The model

The Preisach model [1, 2] decomposes all magnetic systems into an ensemble of bistable
subsystems, each characterized by a moment µ, two states ϕ = ±µ and a double well free
energy profile with two zero-field transition barriers W+ and W−, as shown in figure 1. The
barriers can be represented either by their equivalent fields α = W−/µ and β = −W+/µ, or
by a coercive field Hc = (W+ + W−)/2µ and an asymmetry field hi = (W+ − W−)/2µ. In
essence, the model reduces the magnetizing process to a sequence of elementary Barkhausen
instabilities of magnitude µ. The coercive field hc functions like an intrinsic anisotropy field,
which stabilizes the two moment orientations ϕ = ±µ, and measured the energy dissipated
as heat in a Barkhausen transition [2], while the asymmetry field hi behaves like a local
interaction field due to neighbouring subsystems, which lifts the degeneracy of the two valleys,
and measures the energy stored in a transition [2]. A given magnetic material is identified by
a particular distribution f (W+,W−) of free energy barriers, or equivalently by a distribution
of the characteristic fields, either p(α, β) or p(hc, hi).
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Figure 1. The free energy profile in zero applied field for an elementary Barkhausen subsystem,
with two states ϕ = ±µ separated by energy barriers W− = µα = µ(hc − hi) and
W+ = −µβ = µ(hc + hi).

Transitions between the two states of a subsystem require excitation over the barriers
W± by some combination of field energy and thermal energy. In particular, the application
of an external field ha shifts the energy of the ϕ = +µ state by −µha , and the energy of
the ϕ = −µ state by +µha , and thus modifies all the subsystem energy barriers from W± to
W ′

+ = −µ(β − ha) and W ′
− = µ(α − ha). For subsystems with β > ha , W ′

+ < 0, and only
the ϕ = −µ state is accessible. Similarly, for subsystems with α < ha , W ′

− < 0 and only the
ϕ = +µ state is accessible. All subsystems with (ha < α < ∞,−∞ < β < ha) are bistable
in the sense that they have two accessible states and two positive energy barriers W ′

± > 0. For
the bistable subsystems, transitions may also be induced thermally if the system is at a finite
temperature T . For an experiment with a characteristic time constant texp, thermal transitions
are limited to those barriers which are less than or equal to the effective thermal fluctuation
energyW ∗(T ) = kBT ln(texp/τ0) [3, 4]. These thermal transitions may also be described by an
equivalent thermal viscosity field h∗

T = W ∗/µ, which defines the maximum field barrier which
can be activated at temperature T . Since each bistable subsystem has two energy barriers, a
larger barrier WL = µ(hc + |hi + ha|) and a smaller barrier WS = µ(hc − |hi + ha|), there
are two thermal excitation conditions, W ∗ = WL, which yields h∗

T L = hc + |hi + ha|, and
W ∗ = WS , which yields h∗

T S = hc − |hi + ha|.
Both the field and thermal excitation conditions can be represented graphically in the

Preisach plane [1, 2], in which each subsystem is located with respect to orthogonal coordinate
axes by either its characteristic fields (hc, hi) or by the equivalent fields (α, β) which reduce
the barriers W ′

± to zero. Figure 2 shows the Preisach plane in a positive field ha > 0 at a
finite temperature T . The quadrant enclosed between the boundaries α = ha and β = ha
contains the bistable subsystems, which can potentially occupy either state ϕ = ±µ. For a
given temperature T , there are two thermal excitation boundaries, the dashed boundaries h∗

T S ,
which identify those subsystems whose lower energy barrier matches W ∗(T ), and the solid
boundaries h∗

T L, which are the locus of subsystems whose higher barrier matches W ∗(T ).
Subsystems which lie to the left or above the h∗

T S boundaries have a thermally active lower
barrier and a thermally inactive higher barrier, and consequently occupy their lower energy
state exclusively, while those subsystems within the shaded region have two thermally active
barriers, equilibrium Boltzmann level populations and a superparamagnetic response function
ϕsp = µ(T ) tanh[µ(T )(ha + hi)/kBT ].
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Figure 2. The Preisach plane in a positive applied field ha . The quadrant defined by
(ha < α < ∞,−∞ < β < ha) consists of bistable subsystems with two positive energy barriers.
The two sets of thermal boundaries labelled h∗

T L and h∗
T S are the loci of subsystems whose larger

and smaller energy barriers, respectively, match the thermal fluctuation energy W ∗(T ) = µh∗
T at

temperature T . The shaded area identifies those subsystems which are in thermal equilibrium at
temperature T .

The Preisach diagram in figure 2 provides the basis for a description of common experimen-
tal protocols, such as field cooling (FC), zero-field cooling (ZFC) and moment–field isotherms.
The system response upon warming in a field ha > 0, after first cooling to T = 0 in zero field,
is replicated by simply translating the vertex hc = h∗

T in figure 2 outward along the dotted di-
agonal hi = −ha in the direction of increasing hc, starting from hc = h∗

T = 0. The subsystems
behind the thermal instability boundaries are activated into their appropriate states as shown,
while those in the region of double occupancy (ϕ = ±µ) in front of the dashed boundaries retain
their zero-field cooled configuration. To simulate field cooling (FC) from a high temperature,
the vertex hc = h∗

T is translated inward starting from hc = h∗
T = ∞, where the entire bistable

quadrant is superparamagnetic. This procedure eliminates the possibility of double occupancy
(ϕ = ±µ) in front of the dashed thermal boundaries and, with the exception of the superpara-
magnetic region, forces all subsystems below the diagonal hi = −ha into their ϕ = +µ state,
and all subsystems above the diagonal into their ϕ = −µ state. To generate the magnetic
response at a fixed temperature T to any sequence of field applications and reversals, including
the initial magnetizing curve, major and minor hysteresis loops and remanences, the vertex
hi = −ha is shifted in the appropriate direction along the hi-axis, keeping h∗

T fixed. This pro-
cess has a directional dependence, in the sense that under ZFC conditions the configuration of
the Preisach plane in a given field ha in the region of double occupancy (ϕ = ±µ) is not unique,
but rather depends upon whether the field was approached from above or below. For all of
these protocols, the system response is obtained by weighting the state ϕ(hc, hi, ha, T ) of each



Irreversible response of magnetically ordered materials 3447

subsystem by the Preisach distribution p(hc, hi) and integrating over the entire Preisach plane:

m =
∫ ∞

0
dhc

∫ +∞

−∞
dhi ϕ(hc, hi, ha, T )p(hc, hi). (1)

Thermal effects are not limited to overbarrier fluctuations alone. In fact, both the
spontaneous moment µ of the subsystems, and the subsystem free energy barriers W±, are
expected to depend explicitly on temperature. The variation of the spontaneous moment is
related to the existence of the critical temperature, and is assumed to obey a power law of the
formµ(T ) = µ0(1−T/Tc)

 , where  ∼ 1/3 for magnetic systems. If we assume, in keeping
with standard practice [2], that the Preisach distribution is a product of Gaussian coercive and
interaction field distributions:

p(hc, hi) = (2πσ 2
c )

−1/2 exp

[
− (hc − h̄c)

2

2σ 2
c

]
(2πσ 2

i )
−1/2 exp

[
− (hi − km)2

2σ 2
i

]
(2)

which includes long range mean-field-like interactions h̄i = km proportional to the total
induced system moment m [5], then the temperature dependence of the free energy barriers
W±(T ) is described by introducing similar power law temperature dependences into the
Preisach distribution parameters:



h̄c = h̄c0

(
1 − T

TC

) c

σc = σc0

(
1 − T

TC

) ′
c

σi = σi0

(
1 − T

TC

) i



. (3)

Thus both distributions collapse into δ-functions as T → TC from below, as expected on
physical grounds. This is illustrated schematically in figure 3. The thermal viscosity field
h∗
T , which describes the effects of thermal fluctuations, is related to the thermal fluctuation

energy W ∗(T ) through h∗
T = W ∗(T )/µ0 = (kBT /µ0) ln(texp/τ0). Similarly, the temperature

dependence of the free energy barriers W±(T ) is defined by the temperature dependence of
the characteristic fields hc(T ) and hi(T ) through the relation W±(T ) = µ0[hc(T )± hi(T )].

3. Numerical simulations

According to the model, the temperature dependence of the magnetic response below the
critical temperature TC has two sources: (a) the variation with temperature of properties
which are intrinsic to the system, such as the spontaneous moment µ(T ) and the free energy
barriers W±(T ), and (b) thermal fluctuations, which effectively reduce all of the subsystem
energy barriers by W ∗(T ) and which are extrinsic to the system. The model contains two
fundamental characteristic energies, which form a natural basis for a quantitative comparison
of the two thermal processes and their effects on the magnetic response functions. One of these
characteristic energies is the critical thermal fluctuation energyWC ≡ kBTC ln(texp/τ0), which
measures the highest energy barrier which can be thermally activated for a system with a critical
temperature TC . The other is the mean zero-temperature anisotropy barrier Wa(0) ≡ µ0h̄c0,
which places an upper limit on the height to which the barriers of a given system can grow,
and thus measures, in some sense, the ability of a system to resist the equilibrating effects of
thermal fluctuations. The relative strength of the two characteristic energies is measured by
the dimensionless parameter η ≡ Wa(0)/WC .
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Figure 3. A schematic representation of the collapse of the Preisach distribution p(hc, hi) as the
temperature T approaches the critical temperature TC from below. Both the mean coercive field
h̄c(T ) and the mean interaction field h̄i (T ) = km(T ) vanish as T → TC , as do the dispersions
σc(T ) and σi(T ).

In order to appreciate the physical significance of these two characteristic energies,
it is necessary to compare the temperature dependence of the two competing thermal
processes. Figure 4 shows the temperature dependence, on a dimensionless temperature
scale T/TC , of a band of anisotropy barriers which lie between the two boundary curves
W±
a (T ) = [Wa(0)± 0.4Wa(0)](1 − T/TC)

1/3. The figure also shows the effective thermal
fluctuation energyW ∗(T ) = kBT ln(texp/τ0) = [Wa(0)/η](T /TC) for two extreme situations,
η = 0.2 and η = 4.0, plotted as a function of T/TC , and represented by the two straight lines
in figure 4. If we temporarily neglect the effects of interaction fields hi and the applied field
ha , neither of which are fundamental to the present discussion, then the intersection ofW ∗(T )
with the two boundary curvesW±

a (T ) defines the range of excitation or blocking temperatures
TB for the system, which lie roughly between the two limits TBL and TBH .

For the system with η = 0.2, the critical growth of the spontaneous moment and of the
free energy landscape occurs almost entirely above the highest blocking temperature TBH ,
where W ∗(T ) > W +

a (T ) and hence where thermal energy is sufficient to activate all of the
free energy barriers, so this system will be in thermal equilibrium and will exhibit a reversible
superparamagnetic response throughout the landscape development phase. Below TBH , where
the system exhibits hysteresis, the free energy barriers evolve very slowly with temperature in
comparison with the thermal fluctuation energy W ∗(T ), as shown in figure 4. Consequently,
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Figure 4. The temperature dependence of a band of anisotropy barriers between
W±
a (T ) = Wa(0)(1 ± 0.4)(1 − T/TC)

1/3 (solid curves), and the temperature dependence of the
effective thermal fluctuation energy W ∗(T ) = kBT ln(texp/τ0) = [Wa(0)/η](T /TC), for two
limiting situations where η = Wa(0)/WC = 0.2 and η = 4.0.

the temperature dependence of the magnetic response functions (FC moment, ZFC moment,
hysteresis loop and so on) originates almost exclusively from the thermal-fluctuation-assisted
reduction in the effective barrier heightsWeff (T ) = Wa(T )−W ∗(T ), rather than from changes
in the intrinsic properties of the subsystems with temperature. We refer to systems like this as
fluctuation-dominated systems. As figure 4 suggests, when the system is cooled through TC
in zero applied field ha = 0, blocking will proceed ‘sequentially’, with the highest barriers
blocking first at TBH and the smallest barriers blocking last at TBL. Once the highest-barrier
subsystems freeze, they are capable of generating static local interaction fields, which will lift
the degeneracy of the energy levels of neighbouring smaller-barrier subsystems, causing them
to freeze with unequal Boltzmann populations. Thus the structure of the ground state for this
system may be characterized by highly asymmetric level populations close to (1, 0) or (0, 1),
and this is the configuration which we have adopted for the purpose of these simulations.

By contrast, for the system with η = 4.0, the thermal fluctuation energyW ∗(T ) intersects
the barrier distribution W±

a (T ) very close to TC , during the early stages of the development
process. For the case considered here, the temperature T at which the average energy
barrier reaches the critical height WC is given by Wa(T ) = µ0h̄c(T ) = Wa(0)(1 − T/TC)

1/3

= WC = 1
4Wa(0), which yields 1−T/TC = ( 1

4 )
3 ∼= 0.016, that is, very close to TC . As before,

blocking occurs over a range of temperatures between TBL and TBH . However, in this case,
the superparamagnetic regime (TBH � T � TC) is very narrow, and blocking is complete
not far below TC , so the temperature dependence of the magnetic response throughout the
hysteretic regime (T < TBH ) is expected to be dominated by the evolution of the free energy
barriersWa(T ), that is, by changes in the intrinsic properties of the subsystems themselves with
temperature, with only a minor contribution from thermal fluctuationsW ∗(T ), as a comparison
of the changes in Wa(T ) and W ∗(T ) with temperature in figure 4 clearly shows. We refer to
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systems like this as anisotropy-dominated systems. Although blocking is expected to proceed
‘sequentially’ as before, the structure of the ground state in this type of system is much
more difficult to predict, since rapid changes in the size of the spontaneous moment µ(T )
throughout the blocking regime can potentially lead to considerable variation in the strength
of the interaction fields produced by the blocked subsystems, and hence in the ability of
a blocked subsystem to split the levels of neighbouring unblocked subsystems. Thus, the
ground state level populations may vary from nearly random ( 1

2 ,
1
2 ) if the interaction fields are

weak, to highly asymmetric (1, 0) or (0, 1) if the interaction fields are strong. For reasons of
computational simplicity, we adopt the latter configuration throughout.

While the model clearly admits a broad spectrum of behaviour, depending upon the spe-
cific values of the barrier distribution parameters and on the slope of the thermal fluctuation
line W ∗(T ) in figure 4, we will continue to focus our attention on the two limiting situations
described above, since these are of particular interest from an experimental perspective. All
systems are assumed to share a certain basic set of parameters h̄c0 = 1.0, σc0 = 0.4, σi0 = 0.02
(all normalized to the real zero-temperature coercive field), kBTC = 0.01 (normalized to the
real critical thermal energy), exponents  =  c =  ′

c =  i = 1
3 and an experimental

time parameter % ≡ ln(texp/τ0) = 25 typical of static measurements. Variations in the ratio
η = Wa(0)/WC are accomplished by manipulating the spontaneous subsystem momentµ0, so
the ratios η = 0.2 and η = 4.0 correspond to µ0 = 0.05 and µ = 1.0, respectively. Other pa-
rameters from the basic set are then varied as necessary in order to illustrate specific systematic
effects. In discussing the behaviour of the FC and ZFC response, we will tend to focus on the
low-field limitha � h̄c0, where thermally induced effects dominate over field-induced effects.

Figure 5 shows a comparison of the temperature dependence of the FC and ZFC response
of the fluctuation-dominated (η = 0.2) and anisotropy-dominated (η = 4.0) systems, in
an applied field ha = 0.04. In both cases, the magnetic response is characterized by a

Figure 5. The temperature dependence of the FC and ZFC response functions in an applied field
ha = 0.04 for a fluctuation-dominated system with η = 0.2 and an anisotropy-dominated system
with η = 4.0.
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bifurcation temperature, below which the FC and ZFC moments follow different branches,
with the FC moment always lying above the ZFC moment, and above which the two branches
merge into a single superparamagnetic tail which extends up to TC . The ZFC branch always
exhibits a peak as a function of temperature. The physical origin of this peak is ultimately
thermally activated overbarrier relaxation. The moment initially increases with temperature, as
subsystems with interaction fields −ha � hi � 0 in figure 2 are activated from the −µ(T ) state
to the +µ(T ) state through the thermal boundary h∗

T S , either by the motion of the boundary
itself or by the collapse of the Preisach distribution. Eventually, however, the total system
moment must decrease as the subsystem spontaneous moment µ(T ) weakens and also as
progressively more of the subsystems reach equilibrium and respond superparamagnetically
as ϕsp = µ(T ) tanh[µ(T )(ha + hi)/kBT ]. However, in fluctuation-dominated systems, the
temperature dependence of this structure is determined by sources extrinsic to the system,
that is, by changes in the thermal fluctuation energy W ∗(T ) with temperature, and hence
by the motion of the thermal boundaries in figure 2. By contrast, in anisotropy-dominated
systems, the characteristics of the peak are determined almost entirely by changes in the
intrinsic properties of the subsystems µ(T ) and h̄c(T ) and σc(T ) with temperature, and thus
by the power law dependences in equation (3), although some fluctuation-assisted reduction
of the barrier heights is unavoidably present. In order to illustrate this point, we show in
figure 6 a comparison of the ZFC response of both systems in two applied fields ha = 0.04 and
ha = 0.4, with the usual power law temperature dependences for the subsystem parameters
 c =  ′

c =  i = 1
3 (solid curves), and with these intrinsic temperature dependences removed

entirely,  c =  ′
c =  i = 0 (dotted curves). Clearly, the effect on the fluctuation-dominated

system is negligible, while, for the anisotropy-dominated system, ‘freezing’ the distribution
essentially eliminates the peak.

The mean zero-temperature anisotropy barrier Wa(0) = µ0h̄c0 plays an important role in
defining the location of the peak in the ZFC response. This is illustrated in figure 7, which shows

Figure 6. A comparison of the behaviour of the ZFC moment for the fluctuation-dominated and
anisotropy-dominated systems in two applied fields ha = 0.04 and ha = 0.4, with the usual
subsystem exponents  c =  ′

c =  i = 1/3 (solid curves) and with the intrinsic temperature
dependences removed entirely,  c =  ′

c =  i = 0 (dotted curves).
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the FC and ZFC response in both the fluctuation-dominated and anisotropy-dominated regimes,
for various values of the spontaneous moment µ0. For the fluctuation-dominated systems in
figure 7(a), where the barrier distribution evolves very slowly with temperature, the temperature
of the peak corresponds closely to the temperature at which W ∗(T ) matches the mean zero-
temperature anisotropy barrier Wa(0), that is W ∗(Tpeak) = kBTpeak ln(texp/τ0)

∼= Wa(0),
which yields an immediate estimate for the mean zero-temperature Barkhausen moment
µ0

∼= (kBTpeak/h̄c0) ln(texp/τ0). For the anisotropy-dominated systems in figure 7(b), the
collapse of the free energy landscape and the spontaneous moment complicates this relationship
considerably, and estimates of µ0 depend on much more subtle structural features, such as the
temperature dependence of the ZFC response below the peak.

Figure 7. The dependence of the FC and ZFC response on the spontaneous subsystem moment µ0
for (a) fluctuation-dominated systems and (b) anisotropy-dominated systems, in an applied field
ha = 0.04.

Interaction fields play a particularly important role in shaping the temperature dependence
of the magnetic response, particularly the FC branch. Figure 8 shows the effect of varying the
dispersion σi0 of interaction fields for both fluctuation-dominated and anisotropy-dominated
systems, in an applied field ha = 0.04. When σi0 � ha � h̄c0, cooling from a high
temperature blocks virtually all of the subsystems in figure 2 into their +µ(T ) state, and
the temperature dependence of the FC branch is determined either by the superparamagnetic
response function tanh(a/T ) if the system is fluctuation dominated (figure 8(a)), or by the
critical temperature dependence of the spontaneous moment µ(T ) if the system is anisotropy
dominated (figure 8(b)). As σi0 increases, the fraction of subsystems which are blocked into
the −µ(T ) state grows progressively larger, and the cancellation of the positive and negative
moments causes the FC branch to deviate progressively further below the limiting curves for
weak interactions (σi0 � ha). Figure 8 also shows that, by comparison with the FC response,
interactions have a relatively minor influence on the characteristics of the ZFC branch, which
tends to be dominated by anisotropy effects, as discussed earlier. Systematics like those
predicted in figure 8(a) are familiar from a number of experimental studies of fine particle
assemblies which manipulate the level of particle clustering [6, 7]. A detailed comparison of
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Figure 8. The dependence of the FC and ZFC response on the dispersion σi0 of interaction fields
for (a) a fluctuation-dominated system and (b) an anisotropy-dominated system. The applied field
is ha = 0.04.

these experimental and theoretical systematics has been presented in an earlier publication [8],
using a version of the model which neglects the temperature dependence of the spontaneous
moment and of the barrier distribution. Similarly, the systematic trends in figure 8(b) have
recently been observed in several ferromagnetic perovskites [9], with SrRuO3 representing the
limit of weak interactions (σi0 � ha) and Ni0.8Zn0.2Fe2O4 representing the opposite limit of
a strongly interacting system (σi0  ha).

The temperature dependence of the interaction field distribution also has a profound effect
on the shape of the FC and ZFC response functions, and figure 9 shows how the response
functions of both fluctuation-dominated and anisotropy-dominated systems vary with the
interaction field exponent  i which controls the dispersion σi(T ) = σi0(1 − T/TC)

 i . For
values of  i < 1, the curvature of σi(T ) is negative (d2σi/dT 2 < 0), so the interaction
fields vary relatively slowly with temperature, except in the immediate vicinity of TC , where
|dσi/dT | → ∞, and the FC moment changes monotonically with temperature. However, for
 i > 1, the curvature d2σi/dT 2 is positive, so the temperature dependence of the interaction
fields is strong at low temperatures and the interaction fields become negligible well below TC .
Under these latter conditions the FC moment may exhibit a peak as a function of temperature
if the collapse of the interaction field distribution, which increases the moment by increasing
the number of subsystems in figure 2 with interaction fields hi � −ha and hence with positive
moments +µ(T ), is sufficiently rapid to counteract either the superparamagnetic response
tanh(a/T ) from the shaded region in figure 2, or the critical collapse of the spontaneous
moment µ(T ). While, in principle, this effect is observable in both fluctuation-dominated
and anisotropy-dominated systems, as shown in figure 9, rapid changes in the strength of the
interaction fields well below TC are difficult to justify on physical grounds for anisotropy-
dominated systems, since in these systems it must ultimately originate from rapid changes in
the spontaneous moment µ(T ). However, in fluctuation-dominated systems, the crossover to
superparamagnetism tends to occur well below TC and provides a physically plausible source



3454 T Song et al

Figure 9. The dependence of the FC and ZFC response on the interaction field exponent  i for
(a) a fluctuation-dominated system with σi0 = 0.14 in an applied field ha = 0.04 and (b) an
anisotropy-dominated system with σi0 = 0.02 in an applied field ha = 0.02.

for a rapid weakening of the interaction fields.
Figure 10 shows the temperature dependence of the major hysteresis loop in both

fluctuation-dominated and anisotropy-dominated systems. For the fluctuation-dominated
system (η = 0.2) the collapse of the hysteresis loop is driven almost exclusively by
extrinsic thermal fluctuation effects, while for the anisotropy-dominated system (η = 4.0),
the collapse is defined by the intrinsic temperature dependences in equation (3). The Preisach
simulations also reveal an interesting structural anomaly in the major hysteresis loops at ‘high’
temperatures, which is particularly apparent in the hysteresis isotherms of the fluctuation-
dominated system in figure 10(a). When the system is warmed close to the reversible
superparamagnetic regime, the hysteresis loop develops a constriction in the vicinity of
the origin. This type of distortion is referred to in the literature as ‘wasp-waisting’ [10]
or ‘pinching’ [11]. Such distortions of the hysteresis loop from ‘textbook’ behaviour are
frequently encountered in geological materials, which tend to be heterogeneous mixtures of
various minerals, grain sizes and domain configurations. Similar distortions have also been
observed in a number of weakly interacting frozen ferrofluids [11–14], where they have been
attributed to resonant tunnelling [15]. Wasp-waisted loops have been modelled theoretically
[10] by superposing magnetic responses from two or more subpopulations of particles, which
are distinguished from each other either on the basis of vastly different coercive fields, or
by superparamagnetic versus single-domain response. The Preisach model offers a uniquely
integrated approach to hysteresis, in which competitions like these are treated within a single
unified theoretical framework. As a consequence, the model offers a unique insight into
the physical origins of loop asymmetries. For the systems investigated here, wasp-waisting
originates entirely from thermal relaxation. In terms of the Preisach diagrams in figure 2, when
the system recoils from positive saturation to the saturated remanence state, the switching
boundary β = ha sweeps downward through the Preisach plane from β = ∞ to β = 0,
forcing all particles with β > 0 into the ϕ = −µ state, and leaving a saturation remanence
at T = 0 equal to the sum of all the particle moments within the fourth quadrant of the
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Figure 10. The temperature dependence of the major hysteresis loop for (a) a fluctuation-dominated
and (b) an anisotropy-dominated system. The solid curves correspond to σc0 = 0.4. The dotted
curve in (a) shows the change in the kBT = 0.0015 hysteresis isotherm when the coercive field
dispersion is reduced to σc0 = 0.1.

plane. This remanence differs only slightly from the saturation moment, since the Preisach
distribution tends to be concentrated within the fourth quadrant. When T �= 0, the two dashed
thermal activation boundaries h∗

T S in figure 2 partition the fourth quadrant into a thermally
relaxed, demagnetized component, and a thermally blocked, remanent component. When h∗

T

is comparable to the mean coercive field h̄c(T ), thermal relaxation demagnetizes a significant
portion of the fourth quadrant, and the moment drops precipitously when ha approaches zero
from above. The approach to negative saturation along the negative half branch of the major
loop is more gradual, since the activation boundaryh∗

T S = hc−|hi+ha| must now invert roughly
half of the Preisach distribution, which requires negative fields ha

∼= h∗
T − h̄c − σc − σi

∼=
−σc − σi . The steepness of the major loop for ha < 0 is thus directly dependent on the
dispersions σc and σi of coercive fields and interaction fields. A broad distribution will tend to
delay the approach to negative saturation and ‘re-open’ the loop, producing the ‘wasp-waisted’
or ‘pinched’ appearance. The dotted curve in figure 10(a) illustrates the effect of varying the
dispersion of coercive fields σc0 on the hysteresis isotherm kBT = 0.0015 for the fluctuation-
dominated system, and clearly shows that when the distribution of coercive fields becomes
sufficiently narrow, the ‘wasp-waisting’ becomes unobservable.

4. Comparisons with real systems

The model is able to replicate the response functions of specific systems, and thus offers a
theoretical framework for establishing the properties of the Barkhausen spectrum and details
of interaction effects in real materials. As specific illustrations, figures 11–13 show fits
(solid curves) to representative FC/ZFC and hysteresis loop data (discrete points) for two
thin films consisting of nanodimensional particles of Fe embedded in SiO2 and in Al2O3, each
with volume fractions p ∼ 0.3, and a ferromagnetic substituted perovskite La0.5Sr0.5CoO3,
respectively. The best fit parameters for all three systems are listed in table 1. In order to
describe the hysteresis loops, it was necessary to supplement the Preisach calculation by a
purely reversible term which represents processes which are independent of field history, such
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Figure 11. A comparison of Preisach simulations (solid curves) and experimental FC/ZFC and
hysteresis loop data (discrete points) for a thin film of nanodimensional Fe particles embedded in
SiO2.

Figure 12. A comparison of Preisach simulations (solid curves) and experimental FC/ZFC and
hysteresis loop data (discrete points) for a thin film of nanodimensional Fe particles embedded in
Al2O3.

as elastic distortions of domain structure, or large populations of very small energy barriers
which behave quasi-reversibly, or moment rotation due to a misalignment of the easy axis and
the applied field [2]. Thus m = msat [(1 − f )(Preisach)± f (1 − exp(−λ|ha|))].

A brief comment concerning the fitting procedure is in order here. In multi-parameter fits
like these, which involve up to 13 parameters, an internally consistent, physically meaningful
set of parameter values for a given system can be achieved only if the fits are performed to
a series of hysteresis loops measured over a range of temperatures spanning the irreversible
regime, as well as to a series of FC/ZFC response curves measured over a range of applied
fields which extends at least up to the zero-temperature coercive field. The individual fits
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Table 1. Best fit Preisach parameters.

System TC (K) h̄c0 (Oe) σc0 (Oe) σi0 (Oe) µ0 (emu) k (Oe emu−1)   c  ′
c  i f λ (Oe−1) msat (emu)

Fe–SiO2 500 600 240 60 5.0 × 10−16 0 0.33 0.33 0.33 2.5 0.6 0.000 65 0.04
Fe–Al2O3 400 360 36 90 8.0 × 10−16 8.4 × 103 0.33 0.33 0.33 0.33 0.38 0.0015 0.015
La0.5Sr0.5CoO3 230 2000 0.8 200 5.0 × 10−16 0 0.35 0.3 0.8 0.08 0.38 0.000 16 3.3
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Figure 13. A comparison of Preisach simulations (solid curves) and experimental FC/ZFC and
hysteresis loop data (discrete points) for a ferromagnetic perovskite La0.5Sr0.5CoO3.

shown here are representative of such a sequence. Some of the parameters, such as the mean
zero-temperature coercive field h̄c0, the saturation moment msat , the reversible parameters
f and λ, and, in the case of ferromagnets, the critical temperature TC , are defined more or
less directly by the experimental data. While the remaining parameters are not decoupled,
the numerical simulations indicate that the influence of each parameter tends to be limited
primarily to certain specific features of the response. Thus, the curvature of the major loop
defines σc0 and  ′

c, the FC branch defines σi0, k,  and  i , while the major loop coercive field
and the ZFC branch together define µ0 and  c.

The fits to the Fe–SiO2 thin film in figure 11 show that this system is
characterized by Barkhausen elements with a mean zero-temperature spontaneous moment
µ0 = 5.0 × 10−16 emu ≈ 50 000 µB , and a mean zero-temperature coercive field h̄c0 =
600 Oe with a dispersion σc0 = 240 Oe, corresponding to a mean zero-temperature anisotropy
barrier Wa(0) = µ0h̄c0 = 3.0 × 10−13 erg. Since µ0 is several orders of magnitude larger
than the moment expected for a single Fe grain of diameter d ∼= 3 nm, we conclude that
the Barkhausen entity probably consists of a strongly coupled cluster of Fe particles, which
responds as a cohesive unit. The Barkhausen elements experience local random interaction
fields with a dispersion σi0 = 60 Oe. This system is unusual in the sense that the FC
response also exhibits a well defined peak, which coincides with the peak in the ZFC branch.
The fits show that this behaviour is a direct consequence of the temperature dependence
of the interaction field distribution, specifically σi(T ). While a power law of the form
σi(T ) = σi0(1 − T/TC)

 i with  i
∼= 2.0 can provide an approximate representation of the

data, the fits in figure 11 employed a stretched exponential σi(T ) = σi0 exp[−(T /TBL) i ]
with σi0 = 60 Oe, TBL = 130 K and  i = 2.5. In either case, the interaction field
distribution collapses rapidly with increasing temperature in the vicinity of the peak, leading to
an enhancement of the FC moment, as predicted earlier by the numerical simulations in figure 9.
The fits also yield a value of η = Wa(0)/WC = 0.18, which clearly places this system within
the fluctuation-dominated category. This is consistent with the relative insensitivity of the fits
to any of distribution exponents  ,  c,  ′

c and  i , and hence to the details of the collapse of
the free energy landscape.
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The analysis of the Fe in Al2O3 data in figure 12 shows a similar tendency for the
Fe particles to cluster into large Barkhausen units with moment µ0 = 8 × 10−16 emu,
and yields similar anisotropy barriers Wa(0) = 2.9 × 10−13 erg and a similar ratio of
η = Wa(0)/WC = 0.2, indicative of a fluctuation-dominated system. However, the
characteristics of the interaction field distribution differ markedly in the two systems. The
interaction field energy µ0σi0 is more than a factor of two larger in the Fe–Al2O3 system
and there is no evidence for a rapid collapse of the interaction fields with temperature, as
observed in the Fe–SiO2 system. Furthermore, the Fe–Al2O3 system is characterized by a
long-ranged ferromagnetic coupling between the Barkhausen units with a mean-field coupling
constant k = +8.4 × 103 Oe emu−1, so the mean interaction field h̄i = km experienced by
a Barkhausen element varies from h̄i = 0 to h̄i = 126 Oe between the initial demagnetized
state and saturation.

In contrast with that of the thin films, the behaviour of the perovskite system in figure 13
clearly reflects the influence of the critical temperature TC . The fits in figure 13 were generated
using a log-normal distribution of coercive fields (2πh2

cσ
2
c )

−1/2 exp[−(log(hc/h̄c))2/2σ 2
c ],

and yielded a Barkhausen moment µ0 = 5.0 × 10−16 emu, and a median coercive field
h̄c0 = 2000 Oe, corresponding to a median anisotropy barrier Wa(0) = 1.0 × 10−12 erg. This
system has a granular microstructure, and the effective Barkhausen momentµ0 is many orders
of magnitude smaller than the saturation moment of a typical grain of size d ∼= 40 µm, which
suggests that moment reversal in this system probably proceeds through local unpinning of
domain walls within the grains. For this system, η = Wa(0)/WC = 1.7, which indicates that
intrinsic effects play a dominant role in shaping the response, although thermal fluctuations
clearly are not negligible. In fact, our fits show that the gradual slope of the ZFC moment
below the peak is a direct consequence of the motion of the thermal relaxation boundaries h∗

T S

in figure 2, which is strongly influenced by the size of µ0. The analysis also reinforces the
dichotomy of the FC and ZFC response, in the sense that the amplitude and shape of the FC
branch are determined primarily by σi0 and the exponents  and  i , while the ZFC branch is
dominated by anisotropy effects through σc0, h̄c0,  c and  ′

c.

5. Summary

The Preisach model of hysteresis has been used as the basis for developing a general theoretical
description of irreversibility in magnetically ordered systems, which includes the effects of the
critical ordering temperature TC . The free energy landscape is decomposed into an ensemble of
two-level metastable subsystems, each characterized by two energy barriers which are defined
by the local anisotropy and interaction fields. The free energy landscape has an explicit
temperature dependence which originates from the critical growth of the spontaneous moment
below TC , and thermal overbarrier fluctuations are responsible for relaxing the system towards
equilibrium. These physical elements are basic to all systems which exhibit hysteresis. The
Preisach model unifies these essential elements within a single comprehensive theoretical
framework, which provides a precise and uniquely visual representation of fundamental
processes such as thermal blocking, and which includes an elegant mathematical algorithm for
computing the magnetic response of the system under a variety of experimental protocols. The
model characterizes all magnetic systems by a set of fundamental parameters which include the
critical magnetic ordering temperature TC , the spontaneous moment µ0 and the mean coercive
field h̄c0 of the component subsystems at T = 0, the dispersion of subsystem coercive fields
σc0 and the dispersion of subsystem interaction fields σi0 at T = 0, and the exponents  ,
 c,  ′

c and  i which define the temperature dependence of the spontaneous moment and
the distributions of coercive and interaction fields. In order to illustrate the broad spectrum of



3460 T Song et al

magnetic behaviour encompassed by the formalism, we have focused on two limiting classes of
magnetic systems. This classification is based on a comparison of two characteristic energies,
the mean zero-temperature anisotropy barrier of the subsystems Wa(0) ≡ µ0h̄c0 and the
‘critical’ thermal fluctuation barrier WC ≡ kBTC ln(texp/τ0), which, according to the model,
play a pivotal role in determining the principal features of the magnetic response. The systems
studied here represent the two extreme situations where Wa(0)  WC and Wa(0) � WC .

Perhaps the most striking feature of the model is the richness and scope of its predictive
capabilities. The model is able to replicate a broad spectrum of behaviour observed
experimentally in the field and temperature dependence of magnetic response functions like the
FC and ZFC moment and the major hysteresis loop, in a wide variety of magnetic materials. The
model is able to reproduce very specific experimental anomalies and trends, and to quantify
the interpretation of these systematics by linking them to specific physical parameters and
characteristic energies. One of the unique features of Preisach-based models like this one, is
the explicit treatment of interaction effects. These interactions are an intrinsic component of
the formalism, which arise from the asymmetry of the double well potentials which make up
the free energy landscape of the material. Interparticle interactions are always present to some
extent in all materials, and the simulations show that many of the experimental systematics
ultimately originate from changes in the dispersion σi0 of local random static interaction fields,
presumably due to modifications in the local environment of the particles. Future work will
focus on incorporating a distribution f (µ) of particle moments µ in order to simulate the
distribution of particle sizes observed in real systems. This is a nontrivial generalization, since
each element µ → µ + dµ of the distribution is activated by a different viscosity field h∗

T , and
requires its own Preisach diagram.
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